Effect of Thicker Beam Pipe

2nd Feb 2009

Maki Kurosawa (RIKEN) for the PHENIX Collaboration

Radiation Length

• Brush Wellman wish to make the new beam pipe thicker. The thickness of beam pipe may go from 0.02 to 0.03 (inch).

• Radiation length was calculated for thickness of 0.02 and 0.03.

The radiation length was unchanged by this modification.

theta

Back Up

Radiation Length and P, Plots (Thickness of Beam Pipe: 0.02 inch)

_ 🗖

NOT applying acceptance cut.

0 < theta (degree) < 180 0 < phi (degree) < 360 -15 < Vertex_z (cm) < 0

Radiation Length and P, Plots (Thickness of Beam Pipe: 0.03 inch)

_ 🗖

NOT applying acceptance cut.

0 < theta (degree) < 180 0 < phi (degree) < 360 -15 < Vertex_z (cm) < 0

Calculation of Radiation Length

Use of a pass length through medium to obtain a radiation length.

Not use LSCAN or HSCAN

Radiation Length :
$$\frac{X}{X_0}(total) = \left(\frac{\overline{AB}}{X_0(1)} + \frac{\overline{BC}}{X_0(2)} + \cdots\right) \times 100(\%)$$

Coordinates of point A, B, C... $X_0(1), X_0(2)...$ can be obtained as $X_0(1), X_0(2)...$

can be obtained from PISA.